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Compound threads and jets consist of a core liquid surrounded by an annulus of a
second immiscible liquid. Capillary forces derived from axisymmetric disturbances in
the circumferential curvatures of the two interfaces destabilize cylindrical base states
of compound threads and jets (with inner and outer radii R1 and aR1 respectively).
The capillary instability causes breakup into drops; the presence of the annular phase
allows both the annular- and core-phase properties to influence the drop size. Of
technological interest is breakup where the core snaps first, and then the annulus.
This results in compound drops. With jets, this pattern can form composite particles,
or if the annular fluid is evaporatively removed, single drops whose size is modulated
by both fluids.

This paper is a study of the linear temporal instability of compound threads and
jets to understand how annular fluid properties control drop size in jet breakup,
and to determine conditions which favour compound drop formation. The temporal
dispersion equation is solved numerically for non-dimensional annular thicknesses
a of order one, and analytically for thin annuli (a − 1 = ε � 1) by asymptotic
expansion in ε. There are two temporally growing modes: a stretching mode, unstable
for wavelengths greater than the undisturbed inner circumference 2πR1, in which
the two interfaces grow in phase; and a squeezing mode, unstable for wavelengths
greater than 2πaR1, which grows exactly out of phase. Growth rates are always real,
indicating that in jetting configurations disturbances convect downstream with the
base velocity. For order-one thicknesses, the growth rate of the stretching mode is
higher for the entire range of system parameters examined. The drop size scales with
the wavenumber of the maximally growing wave (kmax). We find that for the dominant
stretching mode and a = 2, variations from 0.1 to 10 in the ratios of the annulus
to core viscosity, or the tension of the outer surface to that of the inner interface,
can result in changes in kmax by a factor of approximately 2. However, for these
changes in the system ratios, the growth rate (smax) and the ratio of the amplitude
of the outer to the inner interface (Amax) for the fastest growing wave only change
marginally, with Amax near one. The system appears most sensitive to the ratio of
the density of the annulus to the core fluid. For a variation between 0.1 and 10, kmax
again changes by a factor of 2, but Amax and smax vary more significantly with large
amplitude ratios for low density ratios. The amplitude ratio of the stretching mode
at the maximally growing wave (Amax) indicates whether the film or core will break
first. When this ratio is near one, linear theory predicts that the core breaks with the
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annulus intact, forming compound drops. Except for low values of the density ratio,
our results indicate that most system conditions promote compound drop formation.

For thin annuli, the growth rate disparity between modes becomes even greater. In
the limit ε → 0, the squeezing growth rate is roughly proportional to ε2 while the
stretching mode growth rate is roughly proportional to ε0 and asymptotes to a single
jet with radius R1 and tension equal to the sum of the two tensions. Thus, in this
limit the growth rate and kmax are independent of the film density and viscosity. The
amplitude ratio of the stretching mode becomes equal to one for all wavenumbers; so
thin films break as compound drops. Our results compare favourably with previously
published measurements on unstable waves in compound jets.

1. Introduction
Axisymmetric circumferential capillary forces destabilize a liquid thread. Rayleigh

(1879) analysed the temporal instability of a static, doubly infinite, inviscid thread of
radius R1, density ρ and tension σ by imposing a monochromatic interfacial distur-
bance of wavenumber q and k (real) in the θ- and z-directions, respectively, at t = 0,
and examining its time evolution with normal modes exp (i(kz+qθ)+s(k, q)t), s(k, q) =
sr + isi, where sr is the temporal growth rate and −si/k the wave speed. The balance
between the destabilizing circumferential curvature and the stabilizing axial curvature
is such that axisymmetric (q = 0) waves longer than the undisturbed jet circumference
grow (sr > 0) without travelling (si = 0), those shorter and/or non-axisymmetric decay,
and there exists a wavelength kmax = 0.697/R1 of maximal instability. Since the insta-
bility is capillary-driven, consideration of fluid viscosity (Chandrasekhar 1961), and
of an infinite, immiscible surrounding fluid (Tomotika 1935) do not change the qual-
itative picture; viscosity lowers growth rates and elongates the fastest growing wave.

The temporal linear stability of a static thread applies to liquid bridge collapse in
microgravity and the setting of thin-walled annular polymer moulds, but its main
application is to the breakup into drops of jets emerging from a nozzle tip. Examples
of the latter occur in ink jet printing (cf. the review by Kamphoefner 1972), fuel
injection, particle sorting (Hertzberg, Sweet & Herzberg 1976) and polymer fibre
spinning (Denn 1980). In jets, disturbances generally arise at the nozzle tip and, for
a uniformly convecting base state, one would expect them to simply convect with the
jet velocity V (si(k) = −kV ) while growing (sr > 0). However, since these disturbances
arise continuously in time (and not just at t = 0) at z = 0, Keller, Rubinow & Tu
(1973) suggested that a spatial analysis for the harmonic response exp (ik(ω)z + iωt)
(s = ±iω imaginary; k = k(s(ω)) = kr + iki complex; kr the wavelength, ki the
spatial growth rate), was more appropriate. They found that for Weber numbers
W = ρV 2R1/σ > 3.2 and non-dimensional frequencies (Strouhal numbers) ωR1/V
between zero and a cutoff depending on W , but close to 1, disturbances grow axially.
If the linear theory holds until close to breakup, the k with the largest negative
imaginary part can predict drop size (∼ 1/kr(ω)) and the distance z(∼ 1/ki(ω)) from
the nozzle to breakup. For asymptotically large W , disturbances do in fact simply
convect with the base velocity (kr(ω) = ω/V ) and grow with the temporal growth
rate (ki(ω) = −sr(kr)/V ) and the temporal analysis predicts the same drop sizes
and breakup lengths as the (linear) convective theory. For W < 3.2, the jet becomes
absolutely unstable and grows both in space and in time due to a pinch singularity
in the dispersion equation (Leib & Goldstein 1986a). The critical W increases with
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Figure 1. Geometry of the compound jet.

inclusion of the density of the surrounding fluid (Lin & Lian 1989) and, if one includes
viscosity (Leib & Goldstein 1986b), with increasing Reynolds numbers Re := ρVR1/µ.

A large body of experiments (see e.g. Donnelly & Glaberson 1966; Goedde & Yuen
1970; Rutland & Jameson 1970, 1971; Lafrance 1975; Taub 1976; Pimbley & Lee
1977; Chaudhary & Maxworthy 1980a; Bousfield, Stockel & Nanivadekar 1990 and
the reviews by McCarthy & Molloy 1974; Bogy 1979; Yarin 1993; Eggers 1997) apply
a sinusoidal periodic disturbance of frequency ω at the nozzle tip to study capillary
jet breakup into drops. These studies, usually at sufficiently high Weber numbers to be
in the asymptotically large W regime, with kr = ω/V , and kiV = −sr(kr), follow the
inviscid predictions almost to breakup. They show that when the disturbances imposed
at the nozzle tip are sufficiently large, nonlinear coupling of other harmonics also only
enter near breakup. The fine structure at the point of breakup, including necking and
satellite formation under both jetting and low-velocity dripping conditions (where jets
do not form but pendant shapes emerge, neck and detach from a nozzle), has been the
subject of several further experimental studies (Pimbley & Lee 1977; Chaudhary &
Maxworthy 1980b; Peregrine, Shoker & Symon 1990; Vassallo & Ashgriz 1991; Shi,
Brenner & Nagel 1994; Basaran & Zhang 1995; Kowalewski 1996; Clanet & Lasheras
1999). Theoretical efforts, including a series of weakly nonlinear (Wang 1968; Yuen
1968; Nayfeh 1970; Lafrance 1975; Chaudhary & Redekopp 1980; Busker, Lamers
& Nieuwenhuizen 1989), fully nonlinear numerical (Mansour & Lundgren 1990;
Tjahjadi, Stone & Ottino 1992; Zhang & Stone 1997; Zhang 1999) and nonlinear
one-dimensional or slender body studies (Lee 1974; Pimbley 1976; Bogy 1978; Bogy,
Shine & Talke 1980; Bousfield & Denn 1987; Wilson 1988; Ting & Keller 1990;
Eggers 1993; Schulkes 1993; Brenner, Shi & Nagel 1994; Eggers & Dupont 1994;
Bechtel, Carlson & Forest 1995; Eggers 1995; Brenner et al. 1997), have captured
some of the details of the breakup.

This paper is a study of the capillary-driven linear instability of compound threads
and jets composed of two immiscible fluids: fluid 1 in a circular core and fluid 2 in
a surrounding concentric annulus (figure 1). Fluid properties and other parameters
are subscripted with the fluid number. Applications of compound and simple jets are
similar, including ink jet printing (Hertz & Hermanrud 1983), but the former also
include the formation of compound fibres and particles. Having a second fluid and a
second destabilizing interface in a compound jet introduce additional physical param-
eters that one can manipulate to control size and the breakup length. Alternatively
viewed, compound jets are a link between liquid films and liquid jet problems.

Sanz & Masseguer (1985) and Radev & Shkadov (1985) performed one-dimensional
(pressure and velocity only functions of z) temporal analyses of inviscid compound
jets for axisymmetric disturbances and found two growing modes. One, with the larger
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Figure 2. The stretching and the squeezing modes.

growth rate, is a stretching (ST) mode (both interfaces move in phase) driven by cap-
illary forces at the inner surface R1, and the other is a squeezing (SQ) mode (interfaces
exactly out of phase) driven by the capillary forces at the outer interface. See figure
2. Inclusion of viscosity and radial motions (Radev & Tchavdarov 1988 and Shkadov
& Sisoev 1996) do not qualitatively change these features. They allow study of the
effects of the outer-to-inner ratios d, m, γ of respectively density, viscosity and surface
tension on the growth rate sr , its maximum smax and corresponding wavenumber kmax,
and on the amplitude ratio Amax of the outer-to-inner interfacial disturbances, the
latter being useful in determining whether the core or the film breaks first.

Radev & Tchavdarov (1988) and Shkadov & Sisoev (1996) do not provide system-
atic calculations of kmax or smax as a function of the system ratios. More importantly,
few calculations are presented for Amax at kmax for the dominant stretching mode.
This is important in determining how the compound jet breaks up, assuming linear
theory is applicable to breakup and the jet is subject to a wide enough disturbance
to realize this wavenumber. Radev & Tchavdarov (1988) find the distance to the first
breakup point is the minimum of L1 and L2, where L1 := [V/sr(ST )(kmax)] ln (R1/ξ1)
corresponds to core breakup first, and L2 := [V/sr(ST )(kmax)] ln ((R2 − R1)/(|ξ2 − ξ1|))
corresponds to the annulus breaking first, where ξ1 and ξ2 are the amplitudes of the
inner and outer interfaces, respectively, at z = 0. The former is ideal for composite
drop production since it leads to drops of core liquid in a continuous jet of annular
fluid, and then to composite drops as the outer interface snaps-off. Initial film snap-off
can be problematic for composite drop formation unless the annular liquid rapidly
wets the core fluid after the core finally breaks. Conditions under which Amax ≈ 1 are
those favouring composite formation and knowledge of how m, d and γ control Amax
would technologically be quite instructive. Radev & Tchavdarov (1988) provide only
a dependence on γ, while Sanz & Masseguer (1985)’s more complete study is for their
one-dimensional, inviscid model.

The above studies examine temporal instability. Chauhan et al. (1996) presented
the axisymmetric spatial instability of a compound inviscid jet, and found two
spatially unstable modes: one, with the larger growth rate, unstable for dimensionless
frequencies (Strouhal numbers ωR1/V ) between 0 and 1, and a second unstable
between 0 and R1/R2. They extended Keller et al.’s (1973) large W asymptotic which
supports the usefulness of the temporal analysis to compound jets. Given its relevance
at high W , we now examine the temporal stability of an axisymmetric compound,
viscous thread with the following goals, as differentiated from those already in the
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literature: (i) We shall carry out a detailed study of the dependences of smax and
kmax on m, d and γ to see how to use the annular fluid to tune drop size and
breakup distances. Radev & Tchavdarov (1988) and Shkadov & Sisoev (1996) non-
dimensionalize using the base velocity V and their stability curves depend on Re and
W . Since the base velocity only convects the instability, the growth rate is a function
only of J(J = ρ1R1σ1/µ

2
1 = Re2/W ) and not of Re and W independently, as a static

thread. We make this change. (ii) We present a detailed study of Amax of the maximally
growing wave as a function of the system ratios to predict the breakup sequence. (iii)
We will analytically examine the thin-annular-film (R2 − R1)/R1 = ε � 1 limit for
the growth rates. This analysis is not only applicable to thin-film applications, but
also sheds light on the physics of each of the unstable modes and their parameter
dependences. We also develop long-wave results (k → 0, ε = O(1)), which serve as
the starting point for the weakly nonlinear evolution of the instability (Papageorgiou,
Maldarelli & Rumschitzki 1990), and is useful in validating numerical calculations.

2. Formulation of the linear stability
A doubly infinite thread of a fluid of density ρ1 and viscosity µ1 is surrounded by

a coaxial annulus of an immiscible fluid of density ρ2 and of viscosity µ2. Both fluids
are assumed incompressible. In the base state there is no flow, and the interfaces are
cylindrical and concentric with inner and outer radii R1 and R2. The tensions of the
inner and outer interfaces are σ1 and σ2, respectively (cf. figure 1). In the stationary
base state the pressure distribution is given by

p
[0]
2 = γ/a, p

[0]
1 = 1 + γ/a, (1)

where p[0]
i denotes the base-state non-dimensional pressure of region i(i = 1 is the

core, i = 2 is the annular domain and the superscript [0] denotes the base state),
pressure is scaled with the capillary pressure [σ1/R1] and a = R2/R1 and γ = σ2/σ1.

We now define an initial condition for the formulation of the temporal linear
stability analysis. We assume that at t = 0, the cylindrical interfacial geometry of the
base state is perturbed by an axisymmetric disturbance with scale δ(� 1). We use a
cylindrical coordinate system (r, θ, z) where the z-axis coincides with the core axis in
the base state. For axisymmetric disturbances at the inner and/or outer interfaces, the
interfacial locus is specified non-dimensionally as r = f1(z, t) and r = f2(z, t), (lengths
are scaled with R1 and time by [(ρ1R

3
1)/σ1]

1/2 and the initial condition is specified as

f1(z, t = 0) = 1 + ζ
[1]
1,0(z)δ and f2(z, t = 0) = a+ ζ

[1]
2,0(z)δ

where the superscript [1] denotes the order of the expansion in δ. The initial velocities
in the core and the annular region are assumed to be zero. The initial interfacial
disturbances cause hydrodynamic flow and interfacial motion for t > 0. Since the
fluid is assumed incompressible and the motion is axisymmetric, the non-dimensional
components of velocity (ui and wi in the r- and z-directions, respectively), can be
described in terms of a (non-dimensional) stream function Ψi(r, z):

ui =
1

r

∂Ψi

∂z
, wi = −1

r

∂Ψi

∂r
. (2)

Here, velocities are scaled as (σ1/(ρ1R1))
1/2 and the stream function by R2

1(σ1/(ρ1R1))
1/2.

The stream function, interfacial deflections and pressure can be expanded in δ:

f1(z, t) = 1 + ζ
[1]
1 (z, t)δ + O(δ2), (3)
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f2(z, t) = a+ ζ
[1]
2 (z, t)δ + O(δ2), (4)

[Ψi(r, z, t), pi(r, z, t)] = [Ψ [1]
i (r, z, t)δ, p[0]

i + p
[1]
i (r, z, t)δ] + O(δ2), (5)

where ζ[1]
i (z, t = 0) = ζ

[1]
i,0 (z), and the evolution in time of the first-order quantities

define the linear stability.
Substituting the expansion for the stream function into the Navier–Stokes equation

for the stream function and retaining the terms first order in δ, results in a linear
differential equation for Ψ [1]

i (r, z, t). Fourier transforming in z (wavenumber k) and
Laplace transforming in time (parameter s) yields the following equation in r:

D

(
D− J

1/2dis

mi

)
Ψi(r, k, s) = 0, (6)

D =
d2

dr2
− 1

r

d

dr
− k2

The dimensionless parameters introduced in (6) are: J = ρ1σ1R1/µ
2
1, m1 = 1,

m2 = m = µ2/µ1, d2 = d = ρ2/ρ1 and d1 = 1. The variable Ψi(r, k, s) (without the
superscript) denotes the Fourier–Laplace transform of the first-order stream function.
The transforms of the first-order stream function and the interfacial deformations (to
be used in the boundary conditions below) are defined as[

Ψi(r, k, s)

ζi(k, s)

]
=

∫ ∞
−∞

[∫ ∞
0

[
Ψ

[1]
i (r, z, t)

ζ
[1]
i (z, t)

]
e−st dt

]
e−ikz dk. (7)

The linearized first order in δ boundary conditions in dimensionless form in the
Fourier–Laplace domain are:

(a) at r = 0, the velocity is bounded:

Ψ1 < ∞, (8)

dΨ1

dr
< ∞; (9)

(b) at r = 1, the velocity is continuous, the tangential stresses on either side balance,
the normal stresses balance the capillary force and the kinematic condition relates the
interfacial deflection to the radial velocity:

Ψ1 = Ψ2, (10)

dΨ1

dr
=

dΨ2

dr
, (11)

m[DΨ2 + 2k2Ψ2] = [DΨ1 + 2k2Ψ1], (12)

m

ikr

d

dr

[(
D− sJ1/2 d

m

)
Ψ2

]
+ 2mik

d

dr

[
1

r
Ψ2

]

− 1

ikr

d

dr
[(D− sJ1/2)Ψ1]− 2ik

d

dr

[
1

r
Ψ1

]
= J1/2[k2 − 1]ζ1, (13)

ζ1 =
ikΨ1

s
+
ζ1,0

s
; (14)

(c) at r = a, the tangential stress is equal to zero, the normal stress balances the
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Figure 3. The two growing temporal modes (the curves that intersect the k-axis twice) and their
long-wavelength limits. a = 2, d = 1, γ = 2, m = 1, J = 1000. ———, Stretching; - - - - -, squeezing.

capillary force and the kinematic condition relates the interfacial deflection of the
outer interface to its radial velocity:

DΨ2 + 2k2Ψ2 = 0, (15)

m

ikr

d

dr

[(
D− sJ1/2 d

m

)
Ψ2

]
+ 2mik

d

dr

[
1

r
Ψ2

]
= −γJ1/2

[
k2 − 1

a2

]
ζ2, (16)

ζ2 =
ikΨ2

as
+
ζ2,0

s
; (17)

ζl,0 denotes the Fourier transform of the initial deflections ζ[1]
i,0 (z). Solution of (6) yields

Ψi(r) = AirI1(kr) + BirK1(kr) + DirI1(βir) + EirK1(βir), (18)

where I1 and K1 are the modified Bessel function of order 1, and Ai, Bi, Di, Ei are
the constants of integration, which can depend on the wavenumber k and β2

i =
k2 + sJ1/2di/mi for i = 1, 2. Substituting (18) into the boundary conditions leads to the
implicit matrix equation A(s, k)x = b for the growth rate s(k). A(s, k) is a 8× 8 matrix
(see Appendix) and

bt = [0, 0, 0, 0, 0, 0, iζ1,0, iζ2,0], (19)

xt = [A2, B2, D2, E2, A1, D1,−iζ1,−iζ2]. (20)

If A is non-singular, x(k, s) = A−1(k, s)b(k). This, in combination with (18), gives the
solution in the Fourier–Laplace domain. Its inversion into the space–time domain is
performed in the Appendix.

The growth rates sn(k) (n denoting the mode) are the zeros of the implicit dispersion
equation det (A(k, s)) = 0. Since the dispersion equation is transcendental, there may
be an infinite number of roots for a given k; we examine only the unstable roots,
because the stable roots decay and do not contribute at long times. Long-wave results
(see § 3.1) show that there are three system modes whose growth rates go to zero as
k → 0. These represent three modes of the system. There are other solutions of the
dispersion equation but they are all stable. Two of the three modes whose growth
rates go to zero as k → 0 are unstable, i.e. the real part of the growth rate is positive,
and the third is stable. The growth rate of the two growing modes as a function of the
wavenumber is shown in figure 3; these two modes are identical to the ones identified
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in the previous studies mentioned above: the growth rate of the first mode is real and
positive for k < 1, i.e. this mode is unstable to all waves with wavelength greater than
the undisturbed core circumference. The second mode has a real and positive growth
rate for k < 1/a, implying that it is unstable to all disturbances with wavelength
greater than the undisturbed outer circumference of the annulus. After calculating
the growth rate and substituting into the dispersion equation, one finds the amplitude
ratio in the Fourier–Laplace domain, i.e. ζ2/ζ1. The growing mode whose growth rate
goes to zero at k = 1/a has a real and negative amplitude ratio for 0 < k < 1/a. This
implies that the two interfaces grow out of phase and thus squeeze the film fluid;
hence the name squeezing mode. The other growing mode, whose growth rate goes to
zero at k = 1, has a real and positive amplitude ratio for 0 < k < 1. This implies that
the two interfaces grow in phase, i.e. the film stretches; hence, the stretching mode.
Figure 2 shows the stretching and squeezing modes. At k = 1/a, the circumferential
curvature of the outer interface balances the longitudinal curvature. Since the growth
rate of the squeezing mode goes to zero at k = 1/a, it is necessary that the forces
due to surface tension balance on the inner surface as well. The only way that this
is possible, if k 6= 1, is if ζ1 = 0. So, ζ2/ζ1 = ∞. Similarly, for the stretching mode at
k = 1, ζ2/ζ1 = 0.

3. Asymptotic results
3.1. Long waves (k → 0)

In the limit k → 0, since the wavenumber is non-dimensionalized by R1, waves are
longer than the outer circumference, so both the squeezing and stretching modes are
unstable. This long-wave limit implies that the length scales in the axial direction are
much longer than the length scales in the radial direction, for both the core and the
annulus. Regular expansions in k of the stream functions and the growth rate s can be
inserted into the linear stability equations to determine analytically the coefficients of
these expansions. The validity of assuming regular expansions is verified by a direct
expansion of the elements of the coefficient matrix A(s, k) as we explain below.

Assuming regular expansions of s and Ψi in k, i.e.

s = s(1)k + s(2)k2 + O(k3), (21)

Ψi = Ψ
(0)
i +Ψ

(1)
i k +Ψ

(2)
i k

2 + O(k3), (22)

substituting these into the governing equation and boundary conditions, and solving
the leading-order problem in k, yields the following solutions to the growth rate:
(i) stretching mode

s = ±
√

1 + aγ

2(a2d− d+ 1)
k + O(k2), (23)

ζ2

ζ1

= a+ O(k);

(ii) squeezing mode

s =
γJ1/2

16ma3(1 + γa)
(4a4 ln (a) + (m− 3)a4 + 2(2− m)a2 + m− 1)k2 + O(k3), (24)

ζ2

ζ1

= −1

γ
+ O(k).
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The asymptotic limits (k → 0) of the two growing modes are compared with the
numerical solutions in figure 3, and the agreement is excellent for long waves,
validating the numerics.

Another way of getting these asymptotic results is by separating the modified Bessel
functions K0 into their logarithmic and the algebraic parts: Kn(z) = gn(z) + (−1)n+1 ln
(z/2)In(z), where g(z) is real. By multiplying Column 1 of the matrix A by ln (ka/2)
and subtracting it from Column 2 one can eliminate the ln (k) terms in the expansion
of Kn. Similarly, by multiplying Column 3 by ln (β2a) and subtracting from Column 4,
one can eliminate the remaining ln (k) terms in the determinant. Thus, it is consistent
to assume, as above, regular expansions of Ψi and s in k. If one expands the remaining
terms in the determinant in k (using the symbolic algebraic operations in Mathematica
for instance), the determinant gives the same roots as obtained above.

The simplification of the continuity and equations of motion in the long-wavelength
limit allow a clear interpretation of the dynamics of both modes, including how the
amplitude ratio is fixed, and insight into the dependence of the leading-order growth
rate on the tension, density and viscosity ratios as given by (23) and (24). As k → 0, the
circumferential curvature −ζ[0]

2 /a2 at r = a creates in the underlying annular liquid a

zeroth-order stress normal to the surface, [p[0]
2 − τ[0]

2[rr]]r=1+a, equal to −γζ[0]
2 /a2. In this

notation of the primitive variables for the perturbed quantities (all in non-dimensional
form and in the Fourier–Laplace domain), the superscript is the order in k, τ[0]

2[rr] is

the viscous stress (= 2(m/
√
J)(du[0]

2 /dr)) and is scaled with σ1/R1. From the formal
development above or the reasoning which will be evident below, the leading-order
growth rate and radial velocity are of order k (stretching mode) or k2 (squeezing
mode). Thus τ[0]

2[rr] is equal to zero and there is no radial acceleration at leading order;

the r component of the equation of motion at O(k0) is

dp[0]
2

dr
= 0, (25)

and the leading-order pressure is in fact constant with the constant imposed by the
normal stress condition at the outer interface:

p
[0]
2 (r) = −γζ[0]

2 /a2, (26)

Similarly for the core phase 0 = −(d/dr){p[0]
1 }, and the constant core pressure can be

related to the deformation at the core/annular fluid interface r = 1 by the normal
stress balance there:

p
[0]
1 (r) = −[γζ[0]

2 /a2 + ζ
[0]
1 ]. (27)

The zeroth-order pressures create order-k axial pressure gradients which drive in
both phases a first-order viscous stress (τ[1]

i[rz]) and axially accelerate the fluid (dis
[1]w

[0]
i )

as described by the order-k axial equation of motion:

dis
[1]w

[0]
i = −ip[0]

i +
1

r

d

dr
[rτ[1]

i[rz]], (28)

where w
[j]
i (r) is the axial velocity of order j and τ

[1]
i[rz] = (mi/

√
J)(dw[1]

i /dr). The

zeroth-order axial velocity w
[0]
i (r) which appears in the axial acceleration in (28) is

independent of r, as can be deduced from the zeroth-order axial equation of motion:

0 =
1

r

d

dr
[rτ[0]

i[rz]], (29)

where τ
[0]
i[rz] = (mi/

√
J)(dw[0]

i /dr) is the zeroth-order shear stress. The zeroth-order
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axial inertia in (29), dis
[0]w

[0]
i , is equal to zero since s leads with k or k2. Thus the

zeroth-order shear stress is a constant divided by r in each phase. Since the gas
exerts no shear on the outer surface, and the zeroth-order stresses are continuous at
r = 1, τ[0]

i[rz] is zero and the zeroth-order axial velocities in each phase are constant
and (by continuity of velocity at r = 1) equal to each other. The zeroth-order axial
velocity (w[0]

i ) has a first-order radial flow u
[1]
i (r) linear in r obtained by the equation

of continuity:

u
[1]
1 (r) = −iw

[0]

2
r (0 < r < 1)

u
[1]
2 (r) = −iw

[0]

2
r (1 < r < a)

}
(30)

From the kinematic conditions s[1]ζ
[0]
2 = −i 1

2
w[0]a and s[1]ζ

[0]
1 = −i 1

2
w[0] and therefore

ζ
[0]
2

ζ
[0]
1

= a for w[0] 6= 0. (31)

The long-wave dynamics of the two unstable modes are different, and the origin
of this difference is the presence of the zeroth-order axial velocity. In the stretching
mode, ζ[0]

2 /ζ
[0]
1 > 0; thus from (31) the amplitude ratio is equal to a and p

[0]
1 (r) =

−[(γ/a+ 1)ζ[0]
1 ]. In (28), the axial velocity can be replaced by the interfacial deflection

using the kinematic condition, and pressures can be replaced by their relations to the
interfacial deflections to obtain an equation in ζ

[0]
2 . By multiplying this relation by

r and integrating in r from 0 to 1 for region 1 and from 1 to a for region 2, and
adding, one arrives at a solvability equation for s[1]. Since the first-order shear stress
is zero at r = a, and continuous at r = 1, this solvability condition is independent
of the first-order shear stress, and becomes identical to (23). Thus in the long-wave
dynamics for the stretching mode, the circumferential-driven axial pressure gradient
accelerates the fluid in both regions, and the growth rate is a function of the core
and annular densities. Because the first-order stress is zero at the outer interface,
the integrability condition explains why the growth rate is independent of the fluid
viscosities (cf. (23)). The stretching flow itself to leading order is locally a bi-axial
extension, with the axial flow of order-k0 and independent of radial position and
the radial flow of order-k and linear in r, and the amplitude ratio fixed at a by the
kinematic conditions.

In the squeezing mode, ζ[0]
2 /ζ

[0]
1 < 0, and therefore w[0] is equal to zero from (31).

The axial velocity in this mode consequently leads with k, and by continuity and the
kinematic condition, the radial velocity and the growth rate lead with k2. The axial
equation of motion contains no inertia to order-k, and the axial pressure gradients
drive only viscous flow as detailed by (28). Integrating (28) as before yields

i
γζ

[0]
2

2

[
1− 1

a2

]
= τ

[1]
2[rz], i

1

2

[
ζ

[0]
1 + γ

ζ
[0]
2

a2

]
= −τ[1]

1[rz] (r = 1), (32)

where we have used the fact that the first-order shear stress is zero at r = a. Since
the shear stress is continuous at r = 1, addition of the above gives the amplitude
ratio ζ

[0]
2 /ζ

[0]
1 = −1/γ. The axial pressure gradient in the annular region applies a

first-order shear stress to the core equal to i 1
2
γζ

[0]
2 [1− 1/a2], and the amplitude of the

inner surface adjusts so that the pressure gradient in the core balances the applied
shear stress. It is this balancing of forces which determines the amplitude ratio in
the squeezing mode, rather than the kinematic constraint as in the stretching mode.
Integrating (28) in each region, and using the continuity of axial velocity and shear
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stress at r = 1, the kinematic conditions and the fact that the first-order shear stress
is equal to zero at r = a, results in the dispersion equation (24). Since there is no
inertia, the growth rate is independent of the fluid densities. Note in (24) the density
ratio d does not appear; the factor of J1/2 which contains the density of the core
fluid emerges from the relation for the first-order shear stress in terms of the velocity
gradient due to the non-dimensionalization of velocity using ρ1. (The dimensional
growth rate multiplies equation (24) by (σ1/(ρ1R

3
1))1/2 and the dependence on the core

density is removed.)

3.2. Thin films (a→ 1)

If the film is thin with respect to the undisturbed core radius R1, it is convenient
to define a parameter ε = (R2 − R1)/R1 = a − 1, the dimensionless film thickness,
which is small compared with one. The dimensionless radial length scale in the film
is O(ε) while the film’s dimensionless axial scale and all dimensionless core length
scales remain O(1). As a result, the radial derivatives in the film are relatively large,
i.e. O(1/ε). In order to rescale the rapid radial variation in the film we stretch the
radial length scale via the change of variables y ≡ (r − 1)/ε, where y-derivatives in
the annulus are O(1). One can expand the solutions in powers of ε and match core
and annulus solutions in orders of ε.

To determine which scalings of s in ε will be appropriate, one can guess that these
scales persist even in the long-wave regime. Then, one expands the three long-wave
asymptotic results in powers of ε to extract these scales analytically. For the three
modes, respectively, one gets

s = ±
√

1 + γ

2
ε0k + O(ε), (33)

s =
J1/2γ

4(1 + γ)
ε2k2 + O(ε3). (34)

Two of the roots scale as ε0 and one root scales as ε2. For each mode, we then
substitute regular expansions for s and Ψi into the differential equation and the
boundary conditions and solve the leading-order problem in ε.

As a means of checking our results we expand these expressions for s in the long-
wave limit of k → 0. These results are identical to (33) and (34), i.e. those obtained
by taking the limit ε→ 0 of the long-wave results.
(i) Stretching mode

For the ε0 mode, assume the regular expansions of s and Ψi in ε,

s = s[0] + s[1]ε+ s[2]ε2 + O(ε3), Ψi = Ψ
[0]
i +Ψ

[1]
i ε+Ψ

[0]
i ε

2 + O(ε3). (35)

The leading-order problem gives an implicit equation for s[0]. The solution is

(k2 − 1)k(1 + γ)I1(k)I1(β) − 4k3βI1(k)

(
I0(β)− I1(β)

β

)

+ 2k2

(
I0(k)− I1(k)

k

)
(s[0] + 2k2)I1(β)

+ J1/2s[0]I0(k)I1(β)(J1/2s[0] + 2k2) = 0, (36)

where

β =
√
k2 + J1/2s[0]. (37)
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Figure 4. Thin-film (ε→ 0) limit for the squeezing mode. d = 1, γ = 2, m = 1, J = 1000.

We recognize that the dispersion equation (36) is identical to that for a single jet with
σ = σ1 + σ2. The amplitude ratio is given as

ζ2

ζ1

= 1 + O(ε). (38)

(ii) Squeezing mode
For the ε2 mode, assume the regular expansions

s = s[2]ε2 + O(ε3), (39)

Ψi = Ψ
[0]
i +Ψ

[1]
i ε+ O(ε2). (40)

In this case one can solve for the leading order growth rate s[2] explicitly:

s[2] = J1/2k
(1− k2)

2I1(k)
F1(k)

γ

1 + γ
, (41)

where

F1(k) = −k I
2
0 (k)

I1(k)
+ kI1(k) + 2I0(k). (42)

The amplitude ratio is given by

ζ2

ζ1

= −1

γ
+ O(ε). (43)

In figures 4 (for the squeezing mode) and 5 (for the stretching mode) we compare
the leading-order asymptotic expressions with exact numerical solutions, and we note
that the asymptotes merge with the numerical solutions for ε smaller than 0.01.

In the thin-film limit (like the long-wave limit), the rescaling of the equations of
continuity and motion in the annular region provide simplified expressions which make
the dynamics apparent. Again the deflection of the outer surface creates a zero-order
normal stress in the annular liquid underneath the surface. Because wavenumbers are
of order one in ε, the capillary force contains both the circumferential destabilization
and the stabilizing axial curvature, i.e. [p[0]

2 − τ[0]
2[rr]]y=1, equal to γζ

[0]
2 (k2 − 1). In this

primitive variables notation, the superscript is the order in ε, τ[0]
2[rr] is the viscous stress

(= 2(m/
√
J)(du[1]

2 /dy)) and is scaled with σ1/R1. The rescaling of the equation of
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Figure 5. Thin-film (ε→ 0) limit for the stretching mode. d = 1, γ = 2, m = 1, J = 1000.

motion in the r-direction shows that this normal stress does not depend on y, even if
there exists a zeroth-order radial acceleration:

0 = − d

dy
{p[0]

2 − τ[0]
2[rr]}, p

[0]
2 − τ[0]

2[rr] = γζ
[0]
2 (k2 − 1). (44)

The order-zero pressure in the film drives an axial viscous flow with order-one shear
stress (τ[1]

2[yz]) and a zeroth-order acceleration of the film fluid (ds[0]w
[0]
2 ) as described

by the order-ε0 axial equation of motion:

ds[0]w
[0]
2 = −ik[p[0]

2 − τ[0]
2[zz]] +

d

dy
[τ[1]

2[rz]]. (45)

The zero-order shear stress τ[0]
2[rz] in the film does not vary with y because the pressure

gradient is of order zero, thus

0 =
d

dy
[τ[0]

2[rz]]. (46)

Since the zero-order stress is zero at the outer interface, [τ[0]
2[rz]] is everywhere zero in

the film. The zero-order axial flow w
[0]
2 is uniform in y, as follows from the ε−2 axial

equation of motion.
In the stretching mode, ζ[0]

2 /ζ
[0]
1 > 0. The normal stress balance at the core/film

interface to leading order becomes

[p[0]
1 − τ[0]

1[rr]]r=1 = −[ζ[0]
1 (1− k2) + γζ

[0]
2 (1− k2)]. (47)

Since in the ST mode, ζ[0]
2 /ζ

[0]
1 > 0, the capillary pressures drive an order-ε0 flow in the

core (w[0]
1 and u[0]

1 ), which can be described by a zero-order stream function Ψ [0]
1 (r, z)

satisfying equation (6). At the core/film interface we have already noted that [τ[0]
2[rz]] is

everywhere zero in the film, so by continuity [τ[0]
1[rz](r = 1)] is zero, i.e. the film cannot

support a zero-order shear stress generated by the capillary forces in the core. Also at
the interface, the zero-order flow in the core entrains, by continuity, zero-order flows
w

[0]
2 and u[0]

2 in the film. We have already remarked that a zero-order axial flow in the

film, w[0]
2 , should be independent of y. By the equation of continuity, the radial flow

is also independent of y. Since the radial velocities of the two interfaces are equal, it
follows from the kinematic conditions that ζ[0]

1 = ζ
[0]
2 , and the amplitude ratio for the
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stretching mode in this limit is equal to one. (We note that the kinematic constraint
also fixes the ST mode amplitude ratio for k → 0 as 1/a: in the common limit k → 0
and ε → 0 both the k and ε expansions for the amplitude ratio agree.) With the
amplitude ratio equal to one, the normal stress balance becomes

[p[0]
1 − τ[0]

1[rr]]r=1 = −(1 + γ)[ζ[0]
1 (1− k2)]. (48)

This condition, together with the fact that the zero-order shear stress is zero at the
core/film interface closes the core problem, and we see as shown formally above that
in the thin-film limit, s[0] for the ST mode is that of a single jet of radius R1 and
tension σ1 + σ2 (see figure 5). The stretching flow in the film is zero order in ε, as
ε→ 0, with radial and axial velocities independent of y.

For the SQ mode, the zero-order pressure in the core must be equal to zero.
Otherwise, as in the ST mode, this gradient will drive a zeroth-order flow in the
core, which induces a zeroth-order flow in the film. As we showed above, the radial
velocity in this zeroth-order film flow is independent of y by continuity, and thus,
by the kinematic condition, fixes the amplitude ratio at one. For squeezing motion,
the amplitude ratio must be negative. From (47) we note that if, to leading order,
the deflection of the inner interface ζ[0]

1 = −γζ[0]
2 , then the normal stress in the core

underneath the interface [p[0]
1 − τ[0]

1[rr]]r=1 is zero, and capillary forces do not drive a

zero-order flow. Thus the amplitude ratio in the squeezing mode is equal to −1/γ.
In the film we noted above that the zero-order pressure drives a first-order shear
stress (τ[1]

2[rz]) which when applied to the core creates a first-order flow field there.

The velocities associated with this flow are w[1]
1 and u

[1]
1 . In principle, they induce

first-order velocities in the film. The first-order axial velocity in the film is a constant
in y because the zero-order shear stress in the film, τ[0]

2[rz], as we showed above, is zero

and τ[0]
2[rz] = (m/

√
J)(dw[1]

2 /dy). The first-order radial flow in the film must be zero; by

continuity u[1]
2 is independent of y and therefore the amplitude ratio would be positive,

which is not allowed for this mode. Thus we require in particular that the first-order
radial velocity equal zero at the core/film interface. However, the first-order axial

flow, by continuity, creates a second-order radial flow u
[2]
2 which is linear in y, since

w
[1]
2 is independent of y. Thus to leading order, the stretching flow in the film consists

of a first-order axial velocity and a derived second-order radial velocity which is
linear in y to describe the change in sign of the radial velocity across the film in the
SQ mode. The second-order radial velocity and the kinematic condition require that
the growth rate lead with ε2. If the continuity equation is integrated over the film, the
difference in radial velocities at the two interfaces is proportional to the axial velocity,

u
[2]
2 (y = 1)− u[2]

2 (y = 0) = −ikw[1]
2 . (49)

It follows from the kinematic conditions and the amplitude ratio that the growth rate
is proportional to the axial velocity, and inversely proportional to 1 + γ:

s[2]ζ
[0]
2 = − ikw[1]

2

1 + γ
. (50)

The axial velocity in the film at order one can be obtained from closure of the
core problem: The order-one radial velocity in the core is required to be zero at the
core/film interface. Furthermore, the first-order traction which drives the first-order
flow in the core can be obtained by integrating (45) noting that fluid acceleration and
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Figure 6. a→∞ limit for the squeezing mode. d = 1, γ = 2, m = 1, J = 1000.

zero-order stress are zero:

τ
[1]
2[rz](y = 0) = ikγ(k2 − 1)ζ[0]

2 . (51)

The shear stress applied to the core is proportional to γ since the capillary pressure of
the outer interface is driving this stress. The first-order core velocities (in particular
w

[1]
1 (r = 1)) can now be obtained by solving (6) for the stream function in the core.

This solution is obtained neglecting the inertial term since s is of order ε2. The
conditions on the stream function are that the (first order) radial velocity is zero
(u[1]

1 (r = 1) = 0), and the shear stress equals the first-order film stress

(τ[1]
1[rz](r = 1) = τ

[1]
2[rz] (y = 0) or

1√
J

{
∂u

[1]
1

∂z
+
∂w

[1]
1

∂r

}
r=1

= ikγ(k2 − 1)ζ[0]
2 ).

Thus w[1]
1 (r = 1) will be proportional to γ

√
J; substituting into (50) yields s[2] which is

identical to (41), and it is clear now why the growth rate as given by (41) is independent
of the film density and viscosity (d and m) and proportional to γ

√
J/(1 + γ).

3.3. Thick films (a→∞)

Another limiting case of a compound jet is when the radii ratio a → ∞. The result
should be a single jet in an infinite medium (Tomotika 1935). We solved the dispersion
equation for this case numerically. In this limit, the squeezing mode disappears because
it is unstable only for k < 1/a and, as a→∞, kcr(= 1/a)→ 0 and its maximum growth
rate goes to zero as a→ ∞ (figure 6). The Tomotika solution matches the stretching
mode solution at a ∼ 10 (figure 7). The growth rate for the stretching mode becomes
independent of the surface tension ratio as the outer interface recedes to infinity.

4. Numerical results for annular films with order-one thicknesses
In this section we present numerical solutions for the case in which the dimensionless

annular thickness is of order one. Simulations of the wavenumber (kmax) at which the
growth rate is the largest, and the growth rate (smax) and amplitude ratio (Amax) at
kmax, as a function of the viscosity, surface tension and density ratios are described. A
representative value of a = 2 is used for the annular thickness and 103 for the viscosity
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Figure 8. Effect of the viscosity ratio m on (a) smax (b) kmax, (c) Amax. d = 1, a = 2, γ = 2, J = 1000.
———, Stretching; - - - - -, squeezing.

parameter J . Since the growth rate is scaled using core variables (recall time is scaled
by [(ρ1R

3
1)/σ1]

1/2 and lengths by R1) these simulations of the effect of m, γ and d can
most easily be interpreted physically as changes in the density and viscosity of the
annular layer, and the tension of the outer interface. Thus they address specifically
the question of how the properties of the annular layer can be used to adjust the
properties of jet breakup.
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4.1. Effect of the viscosity ratio

Increasing the viscosity of the secondary fluid increases the viscous resistance and thus
leads to a decrease in the growth rate (figure 8a). The decrease is more pronounced
in the squeezing mode because there is more fluid motion due to the squeezing of the
annulus. For the entire range of m, the growth rate of the stretching mode is higher.
With regard to kmax, we note that for the squeezing mode, the maximally growing
wavenumber only increases marginally up to approximately 10, and then decreases
by approximately one-half for m between 10 and 103. For the stretching mode, we
find a significant overall reduction of kmax with increasing m (figure 8b) taken over
the entire viscosity range studied (0.001 < m < 103) and the reduction is from 0.63
to 0.25. However, a plateau region exists for m between 1 and 20. In this range the
maximum growth rate also does not change, so we would expect in drop formation
applications the breakup length and size to be relatively insensitive to the viscosity
ratio for 20 > m > 1.

An increase in m results in a decrease in both the core and the film velocities.
Thus, the amplitude ratio, which is the ratio of the radial velocities at the two
interfaces, does not change significantly for both modes (figure 8c). In particular for
the dominant stretching mode, there is only a change from 2.5 to 1.5.

4.2. Effect of the surface tension ratio

The surface tension forces are independent of the film thickness. So the variation in
smax, kmax and Amax with a change in γ for finite film thickness should be qualitatively
similar to that in thin films. In the thin-film limit, the growth rate s(γ), and hence
smax(γ), for the squeezing mode is inversely proportional to 1 + 1/γ. We observe the
same trend for ε ∼ 1 as shown in figure 9(a). In the thin-film limit, the stretching mode
is like a single jet with dimensionless surface tension 1 + γ. A similar trend occurs
for finite film thicknesses (figure 9a). In the stretching mode, plots (not shown) of the
growth rate as a function of the wavenumber indicate that the growth rate increases
with an increase in γ for k < 1/a and decreases for 1/a < k < 1. The reason for this
is because an increase in γ results in an increase in the net capillary pressure exerted
by the outer interface, which is destabilizing if k < 1/a and stabilizing otherwise.
Thus if kmax > 1/a, smax will decrease with an increase in γ and the reverse will
happen if kmax < 1/a. In figure 9(b) the variation in kmax with γ is shown. For γ < 1,
kmax > 1/a(= 0.5). In this range, smax decreases (figure 9a) although the decrease is not
evident in the figure. For γ > 1, kmax < 1/a, and smax increases with an increase in γ.
The growth rate of the stretching mode is higher than that of the squeezing mode for
the entire range of γ; it is again the dominant mode. The variation of kmax with γ for
the stretching and the squeezing modes as given in figure 9(b) indicates a significant
decrease in kmax with an increase in γ for the stretching mode (0.66 to 0.36) while kmax
increases, though not as significantly (0.32 to 0.48), with γ for the squeezing mode.

As ε→ 0, the amplitude ratio for the stretching and the squeezing modes are 1 and
−1/γ, respectively. When ε ∼ 1, Amax for the squeezing mode follows −1/γ closely
and Amax for the stretching mode is close to 1 (0.8 to 2) for the entire range of γ
(figure 9c). Thus for the dominant stretching mode, as was the case with the viscosity
ratio, the amplitude ratio is not sensitive to the surface tension ratio.

4.3. Effect of the density ratio

An increase in the film density increases the core and annular fluid inertias and, since
the capillary driving forces do not increase, the growth rate decreases. In the squeezing
mode, there is more fluid motion, so its decrease in growth rate is more appreciable,
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Figure 9. Effect of the surface tension ratio γ on (a) smax (b) kmax, (c) Amax, d = 1, a = 2, m = 1,
J = 1000. ———, Stretching; - - - - -, squeezing.

but the growth rate of the stretching mode is once again dominant (figure 10a). In
figure 10(b), kmax for the squeezing mode decreases slightly with an increase in d while
kmax for the stretching mode follows an interesting trend: there is a significant increase
(0.32 to 0.52) for d < 1, a maximum at k = 1, and a significant decrease (0.52 to 0.35)
for d > 1. The amplitude ratio for the stretching mode (figure 10c) is sensitive to the
density ratio. As d increases from 0.1 to 10, Amax decreases from 8 to 0.5, and this
order of magnitude change in the ST mode Amax is far greater than the variation for
the viscosity and surface tension ratios. For the squeezing mode the increase with d
is slight (figure 10c).

5. Comparison with experiment
The theory developed in this paper predicts the breakup of a compound thread

resulting in the formation of compound drops and gives the linear theory’s estimate
of the breakup lengths and of the drop sizes at breakup. Hertz & Hermanrud (1983)
have done experiments with a compound jet generated using a single nozzle assembly
that was filmed as the jet moved in the axial direction. The primary fluid in their
experiment was a water-soluble ink and the secondary fluid was a silicone oil. The
physical parameters were: σ2 = 20 × 10−3 N m−1, σ1 = 52 × 10−3 N m−1, µ2 = µ1 =
2 × 10−3 kg m−1 s, ρ2 = ρ1 = 1000 kg m−3, R1 = 75 × 10−6 m, R2 = 150 × 10−6 m,
V = 1.98 m s−1. Their observations include pictures of the compound jet as it comes
out of the orifice, and the capillary breakup into compound drops. From the pictures
it is possible to measure the wavelength(s) of the spatially growing wave, as in figure
6 of their study. For the system parameters, the Weber number is of order 10, so
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(as noted in the introduction) we may use the kmax from our temporal analysis to
predict the wavelength of the observed spatially growing wave. The wavenumber
(non-dimensionalized by R1) from figure 6 of Hertz & Hermanrud (1983) is 0.64
for the first wave. The wavenumber changes in the axial direction and the average
is 0.6. Figure 11 shows the predictions of the (non-dimensional) growth rate as a
function of the (non-dimensional) wavenumber from our temporal analyses using the
physical parameters of the experiment (γ = 0.4, d = 1, m = 1, J = 937). The maxima
in the temporal growth rate is at k = 0.62. Sanz & Masseguer (1985) compared
the results of the same experiment with their theoretical predictions based on the
one-dimensional temporal model. Their prediction for the wavenumber was 0.7, so
the inclusion of viscosity and radial motion has brought the linearized theory closer
to the experimental results.

We note that the mode with highest growth rate is observable at times sufficiently
long that its growth rate dominates all other modes, provided the jet is still in the
linear regime. At short times, other modes also contribute and this may explain why
the observed wavelength of the jet changes along the axial direction.

6. Discussion and conclusions
A compound thread is unstable due to capillarity. We have solved its temporal

linear hydrodynamic stability, and have found two unstable modes. In the stretching
mode the interfaces grow in phase, and in the squeezing mode they grow out of phase.
The stretching and the squeezing modes are unstable for waves longer than the inner
and the outer circumferences, respectively. In the stretching mode, extrapolating the
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Figure 11. Prediction based on the temporal analysis for γ = 0.4, a = 2, d = 1, J = 937.

growth beyond the linear regime will result (for amplitude ratios of order-one) in
the breakup of the core leading to drops of primary fluid in the secondary fluid. If
the system continues to follow its pre-breakup dynamics, further nonlinear stretching
growth will finally cause rupture of the annular fluid to form compound drops. In the
squeezing mode when extrapolating the linear dynamics, either the film or the core can
break first depending on the film thickness. In experiments, both modes grow and the
one with the higher growth rate will dominate. Our results show that the stretching
mode has the higher growth rate, and for most system ratios an amplitude ratio
approximately one, and thus dominates the long-time linear regime and the breakup;
thus we expect under most conditions compound drops to form. The growth-rate
time scales between the two modes become more disparate for thin annular films. In
the thin-film limit, the squeezing mode’s growth rate goes to zero as ε2. The stretching
mode’s growth rate goes as ε0 and approaches a single jet with surface tension equal
to the sum of the two interfacial tensions.

We present plots of the maximum growth rate, the wavenumber of maximum
growth and the amplitude ratio as a function of the ratios of the density and viscosity
of the annular to the core fluid, and of the ratio of the surface tension of the outer
fluid to the interfacial tension between the outer fluid and the core. Variations in the
viscosity, and tension ratios when they have values near one can change kmax by a
factor of 2 with minimal change in the growth rate or amplitude ratio. The amplitude
ratio and the growth rate are most sensitive to changes in the density ratio. These
calculations can be used as a guide for understanding how to vary the annular fluid
properties to manipulate the breakup length and the drop size of compound jets in
technological applications. The formation of compound drops, which is consistent
with stretching-mode dominance, was observed by Hertz & Hermanrud (1983). Our
predictions of kmax compare well with their experiments and provide confidence in
using our calculations as guides for predicting jet breakup lengths and drop size.

This work was supported in part by a Petroleum Research Fund grant to DR
(ACS-PRF 27403-AC9), a NASA grant to CM (NASA32167), and an Air Force
grant to D.P. (F 49620-94-I-0242).
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Appendix
The 8× 8 matrix introduced in § 2 is given by

0 0 0 0

kI1(ka) kK1(ka) kI1(β2a) kK1(β2a)

I1(k) K1(k) I1(β2) K1(β2)

kI0(k) −kK0(k) β2I0(β2) −β2K0(β2)

dJ1/2sI0(ka) −dJ1/2sK0(ka) 2mkβ2I
′
1(β2a) 2mkβ2K

′
1(β2a)+2mk2I ′1(ka) +2mk2K ′1(ka)

dJ1/2sI0(k) −dJ1/2sK0(k) 2mkβ2I
′
1(β2) 2mkβ2K

′
1(β2)+2mk2I ′1(k) +2mk2K ′1(k)

2k2I1(ka) 2k2K1(ka) I1(β2a)(β
2
2 + k2) K1(β2a)(β

2
2 + k2)

2mk2I1(k) 2mk2K1(k) mI1(β2)(β
2
2 + k2) mK1(β2)(β

2
2 + k2)

kI1(k) kI1(β1) −s 0

0 0 0 −s
−I1(k) −I1(β1) 0 0

−kI0(k) −β1I0(β1) 0 0

0 0 0 J1/2γ(k2 − 1/a2)

−J1/2sI0(k) −2kβ1I
′
1(β1) J1/2(1− k2) 0−2k2I ′1(k)

0 0 0 0

−2k2I1(k) −I1(β1)(β
2
1 + k2) 0 0


(A 1)

If Cij is the cofactor of Aji(k, s), the cofactor expansion of A−1(k, s) gives, from (19)
and (20),

x(k, s) =
C (k, s)b(k)

det (A(k, s))
. (A 2)

Using b(k) from (19) in (A 2), the ith (i = 1, . . . , 8) component of x(k, s) is

xi(k, s) = i
Ci7ζ1,0 + Ci8ζ2,0

det (A(k, s))
. (A 3)

In particular,

ζ1(k, s) = −ζ1,0C77(k, s) + ζ2,0C78(k, s)

det (A(k, s))
, (A 4)

ζ2(k, s) = −ζ1,0C87(k, s) + ζ2,0C88(k, s)

det (A(k, s))
. (A 5)

One needs to invert (A 3)–(A 5) to get the solution in the space–time domain.
We being by inverting the Laplace transform:

ζ̂i(k, t) =
1

2πi

∫ p(k)+i∞

p(k)−i∞
ζi(k, s)e

st ds, (A 6)

where p(k) is real and larger than the largest real part of any singularity of the
integrand of (A 6) for that value of k. To perform the line integration, we appeal to
the residue theorem. Thus, for a given k, we need to find the poles and branch cuts
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of ζi(k, s) in the s-plane. Despite involving βi = (k2 + sJ1/2di/mi)
1/2, it is easy to show

that the integrand has no branch cuts because: (i) βi only appears in the integrand
in combinations which have no branch cuts in the complex s-plane, and (ii) as noted
in the text, the logarithmic part of K0(βi) can be removed exactly from the integrand
by elementary row operations. The poles of the integrand in (A 6) can arise from
the roots of the dispersion equation, i.e. det (A) = 0, or when the components of the
cofactor matrix diverge. For a given k 6= 0, this can happen only when βi becomes
0, i.e. s = −mik2/(diJ

1/2). But as βi → 0, asymptotic analysis using K0(βi) ∼ − ln (βi),
K1(βi) ∼ 1/βi, I0(βi) ∼ O(1) and I1(βi) ∼ βi/2 shows that Cij and det (A) stay finite.
Similarly k = 0 is not a pole for any s. Thus the only relevant poles sn(k) of the
integrand are those for which det (A) = 0. We evaluate them (a similar expression can
be written for ζ2) assuming they are simple:

ζ̂i(k, t) = −∑
n

ζ1,0C77(k, sn(k)) + ζ2,0C78(k, sn(k))

∂ detA

∂s

∣∣∣∣
k,sn(k)

esn(k)t. (A 7)

The Fourier inversion requires the initial interfacial disturbances ζ1,0, ζ2,0. If they are
periodic and monochromatic, ζ1,0 = Geik1,0z , ζ2,0 = Heik2,0z and the Fourier inverse of
(A 7) is

ζ
[1]
1 = −∑

n

GC77[k1,0, sn(k1,0)]
eik1,0z+sn(k1,0)t

∂ detA

∂s

∣∣∣∣
k1,0 ,sn(k1,0)

+HC78[k2,0, sn(k2,0)]
eik2,0z+sn(k2,0)t

∂ detA

∂s

∣∣∣∣
k2,0 ,sn(k2,0)

 , (A 8)

with a similar expression for ζ[1]
2 . An arbitrary periodic initial condition will lead to an

outer sum over the poles k0 of the initial condition. The growth rate smax of the fastest
growing mode dominates the long-time solution ∼ exp (smaxt), as in normal-mode
analysis.

If, rather than being periodic, the initial disturbances are absolutely integrable,
their Fourier transforms have no poles on the real k-axis; thus the Fourier integral
requires a separate evaluation. Since the integrand of the inversion integral (A 7)
grows as eikz+s(k)t, we use the method of steepest descent to evaluate its asymptotically
long-time limit, where only portions of the domain of integration for which sr > 0
make non-exponentially small contributions. For k real and positive, s1 and s2 are
purely real and are shown in figure 3. From the explicit form of the matrix A in (A 1),
it is easy to show that k, s real implies det (A(k, s)) = det (A(−k, s)). Thus s(k) is even.
The stretching (n = 1) mode contributes for −1 < k < 1 = kc1, the squeezing mode
(n = 2) for −1/a < k < 1/a = kc2, and other non-neutral modes decay as t→∞:

ζ
[1]
1 (z, t) = − 1

2π

2∑
n=1

∫ kc,n

−kc,n

ζ1,0C77(k, sn(k)) + ζ2,0C78(k, sn(k))

∂ detA

∂s

∣∣∣∣
k,sn(k)

eikz+sn(k)t dk. (A 9)
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Note that sn(0) = sn(kcn) = 0 and sn(k) goes through a maximum at 0 < kmn < kcn,
where we denote the maximum at kmn by smn. For each value of n, Watson’s lemma
(see for example Carrier, Krook & Pearson (1983, chap. 6)) can then be applied
separately for the two domains (0, kcn) and (−kcn, 0):

ζ
[1]
1 (z, t) = − 1√

2π

2∑
n=1

esmnt√
t

[
eikmnz

(ζ1,0C77 + ζ2,0C78)
∣∣
kmn,smn

[∂ detA/∂s]
∣∣
kmn,smn

√−(∂2s/∂k2)
∣∣
kmn

+eikmnz
(ζ1,0C77 + ζ2,0C78)

∣∣−kmn,smn
[∂ detA/∂s]

∣∣
kmn,smn

√−(∂2s/∂k2)
∣∣
kmn

]
, (A 10)

ζ
[1]
2 (z, t) = − 1√

2π

2∑
n=1

esmnt√
t

[
eikmnz

(ζ1,0C87 + ζ2,0C88)
∣∣
kmn,smn

[∂ detA/∂s]
∣∣
kmn,smn

√−(∂2s/∂k2)
∣∣
kmn

+eikmnz
(ζ1,0C87 + ζ2,0C88)

∣∣−kmn,smn
[∂ detA/∂s]

∣∣
kmn,smn

√−(∂2s/∂k2)
∣∣
kmn

]
(A 11)

where at kmn it is easy to show from the fact that detA(k, s(k)) = 0 that at kmn
− ∂2s/∂k2

∣∣
kmn

= [∂2 detA/∂k2]
∣∣
kmn,smn

[∂ detA/∂s]−1
∣∣
kmn,smn

and the second derivative in

(A 10) and (A 11) can be replaced by this relation. Thus, the long-time solution de-
pends only on the maxima of the growth rate and recovers the standard exp (smnt)/

√
t

form, which differs from the normal mode result by the well known
√
t in the

denominator.
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